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It is shown that there is nothing paradoxical in Kovacs’ well-knownT,fldata. At small deviations from
equilibrium (161< a few times 10–4),the ~eff-valuesare inaccurate, should be rejected, and do not allow
any conclusionabout the behaviourof r.ff for 6 + O.Thus, there has neverbeen any physicalevidencefor a
‘paradox’or an ‘expansiongap’at equilibrium.The reliablepart of the data (16[> a fewtimes 10-4)can be
described, within experimental error, by the phenomenologicalvolume-recoverytheory. A dependenceof
~effon the initial temperature (at constant 6) is a normal feature of linear and nonlinear systemswith wide
distributions of relaxation times. The dependencemay even persist up to equilibrium; however, ~,ffthen
necessarilycontinuesto increase(to m) with decreasingIdlinstead of approaching a finitelimit as suggested
by Kovacs’data. Q 1997ElsevierScienceLtd.
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INTRODUCTION

In 19641 Kovacs reported some volume-recovery data
reproduced in part in Figure 1. The data refer to heating
tests from thermodynamic equilibrium at initial tem-
perature T. to final temperature T; T. and T were varied.
Quantity 6 characterizes the deviation from equilibrium
and is defined by

6 = (?J– vm)/vm (1)

where v~ denotes the equilibrium specific volume at final
temperature T.

Effective relaxation time -remis defined by

~eff= [(–d6/dt)/6]-1 = [dln161/dt]-1 (2)

in which the vertical bars denote absolute values. This
relaxation time was introduced by Kovacsl as a purely
experimental quantity. For linear processes with a single,
constant, relaxation time -rl, 6 follows an exponential
decay curve and ~effis constant and equal to -rI. In all
other cases, ~.ff may vary during the volume-recovery
process, just as seen in Figure 1.

At first sight, the behaviour of Figure 1 looks peculiar.
The effective relaxation time ~eff,turns out to depend on
the initial temperature To, even near equilibrium at final
temperature T. So, near or at equilibrium at T, the
material appears to remember the initial temperature TO.
This would violate the very idea of an equilibrium state
at T, and therefore led to the term -reffparadox.

Another common phrase is expansion gap: the dif-
ference in log-remat equal 6 and T for recovery from
different temperatures T. (see vertical arrow in Figure 1
for the T = 40”C data). Usually, the phrase ‘expansion
gap’ is reserved for the To-dependence of ~eff at
equilibrium (6 = O). In the present paper, the phrase is
used in the wider sense of a To-dependence of rM
at arbitrary 6 (vertical arrow in Figure 1 refers to

6 = –1.4 x 10-3). The word ‘paradox’ however only
refers to cases where the gap persists in the equilibrium
state (a gap at 6 # O is not paradoxical at all; see
Theory).

Several authors (see refs 2–14) have discussed the
paradox and, for example, McKenna stated (p. 350 of
ref. 3) that it cannot be explained by any of the existing
theories for volume recovery 15-18,except, Ngai and
coworkers’ coupling mode19.

The present paper re-analyses the theory as well as the
experimental results. It is shown that:

1)

2)

3)

4)

5)

A dependence of ~effon T. (a gap) is a straightforward
consequence of a wide distribution of relaxation
times; it naturally occurs in linear systems. In such
systems, the gap may even persist up to equilibrium.
However, -reffthen continues to increase (up to co) for
6 + O;there will be no finite limit as suggested by the
data of Figure 1.
The conventional volume-recovery theory 15-18pre-
dicts that the gap at given 6 and T is not affected by
the nonlinear effects.
Quenching (T. > T) produces a ‘contraction gap’.
This is hardly seen in practice and not discussed in the
literature, because volume recovery after quenching is
strongly influenced by the non-ideality of the quench
(finite cooling rates); this masks the contraction gap.
Kovacs’ ~.ff data (Figure 1) are very inaccurate for
small & (< a few times 10-4) and should be rejected.
The reliable part of Kovacs’ data can be described by
the phenomenological volume-relaxation theory ]5-ls
within experimental error.

Thus, the idea that Kovacs’ data reveal a paradox is
wrong for two reasons: first, the data do not allow for
any conclusion about -r.ffat &values close to equilibrium
(point 4). Secondly, the assumption that, at equilibrium,
~effshould converge to a unique value, independent of

POLYMER Volume 38 Number 181997 4677



Volume-recovery theory. 1: L. C. E. Struik

1 I 1 I 1 1 1

1~’,.gTe”,rJ0a3F
hrs ‘0\. .*

I

●

\ ● *
● 30”

gap

“ .:<%

J“ m
35

----To, “c

-2-1 4
I I 1 1 I 1
0 1 2 3 4

— -6X I@

Figure 1 Volume recovery after jumps (heating) from equilibrium
states at initial temperatures TOto final temperatures T of 40 (dots) and
35(’C (circles). The horizontal axis gives the deviation IS from
equilibrium as defined by equation (1), the vertical axis shows the
effective relaxation time ~,mdefined by equation (2). Replotted with
inverted log ~efr-and &scales from Figure 6 of ref. 2; for the recovery
after cooling, see Figure 5

initial temperature TO is wrong (point 1). The phrase
paradox arose because Kovacs’ data deviate from the
expected behaviour; however, for 6 + O, the data are
unreliable and the expectation wrong.

THEORY

Linear relaxation; the origin oj’the gap*

As an example, we consider a linear volume-relaxation
test. The material is in thermodynamic equilibrium at TO
for t < O;at t = O, the temperature is suddenly raised to
final temperature T. To get linear behaviour, T and TO
have to differ only slightly ’g. The deviation from
equilibrium is given by v(t)– Vm = v=ti(t) = IT’.– T]
d(t) in which ~(t) is the linear volume responselg. As in
Figure Z, we define I/Tefi = –[1 /rS(t)]d6(t)/dt = –d ln[6’1/
dt = –d in #(t)/dt and plot it vs the deviation 6 from
equilibrium. By varying 7’0we get different amplitudes
(initial conditions of Figure 1).

If @(t) relaxes according to a single exponential
(d(t) = ~ e-t”) in which ~ is the relaxation time and A
the value for t = O)we find: ~eff= I- = constant. Thus, in
this case, variations in T,ff as seen in Figure 1 are
impossible.

Usually, relaxation of polymers does not obey a single
exponential but reveals a wide distribution of relaxation
times. As an example, consider:

r)(t)= /l/(l + t/T)n (3A)

in which n is a constant (generally < 1) and .4 the initial
value for t = O. This equation is the well-known power
law20,slightly modified to avoid an infinite value at t = O;
usually, constant 1 in the nominator is omitted.

We find:

~eff = (T + t)/n (3B)

With:

fi/ao= (1 + [/T)-n (3C)

.
* The theory is formulated for volume recovery; it equally applies to
arbitrary linear relaxation processes, e.g. stress- or dielectric-relaxation

this yields:

7-eff= (T/n) (60/6) “n (3D)

A graphical illustration is given in Figure 2. It shows that
~effdepends on the initial conditions (6.) over the whole
relaxation period, up to equilibrium. We also see that ~ej.f
varies (increases) with time and we clearly observe a gap
that persists up to equilibrium. Thus, a quite usual linear
system shows an ‘anomaly’ similar to that shown by
Kovacs’s volume-recovery data. The phrase ‘paradox’
should therefore be avoided. The confusion appears to
originate from the implicit assumption that ~effis some-
thing like a state variable that, irrespective of the initial
conditions, should converge to a unique value at equilib-
rium. The example above demonstrates that this is not
the case, at least not in general.

Let us consider a second example. Relaxation (also
volume recovery, see refs 3–5) at temperatures close to
glass transition temperature (TJ is often described by the
Kohlrausch–Williams–Watts (KWW) equation

~(t) =.4 exp(-(t/~)n) (4)

where T and n < 1 are constants, depending on
temperature. The relaxation curve according to KWW
is similar to that according to equation (3A), although
the cut-off at long times is sharper (at equal values of n).
For Teffwe find:

An

-ref,= (7/n) [ln(iio/6’)]-]+]in (5)

illustration is given in Figure 3. We observe a
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Figure 2 TCffvs deviation, 6, from equilibrium for linear relaxation
according to equation (3A) with n = 0.5 and ~ = I s. The curves are
given for three values of the initial deviation 6.. The gap is clearly visible
and persists up to equilibrium (t + cm).For two values for 6., viz. 6(11
and J02, the gap g = ln[~er,JO,/~efi,J(,,]is independent of J and equal to
(1/n) in (601/6.,) (see equation (3D))

t The strong increase in log T.flwith decreasing J, shown in Figure 2, is
not observed in Figure 1. This difference is due to the strong nonlinear
effects in the volume recovery of Figure 1. Tbis point will be discussed
later; here, we only aim at showing that a gap is a quite normal
phenomenon, even for 5 + O
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behaviour similar to that of Figure 2: r.fl changes with 6,
but now the gap (effect of initial deviation) closes on
approaching the equilibrium state. As shown in the right
subfigure, this closure is very slow; at 6s of only a few
percent of the initial deviation 6., the gap is still O.1–0.2
decades wide. The gap will be the larger and the closure
the slower, the lower the value of n.

The behaviour of linear systems can be summarized as
follows: when time t increases, r.fl ‘probes’ all relaxation
times of the system. If there is only one (-rl), ~.ff is
constant and equal to rl. If there is a distribution
between a minimum value ~minand a maximum ~~.., 7eff
will gradually increase with t from Tmi.to ~~,x and stay
constant (at Tma,)for t >> 7maX.If there is no maximum
relaxation time, ~.ff continues to increase with t,as the
width of distribution increases. For such systems, the
phenomena observed by Kovacs (expansion gap, etc.)
are not peculiar but in line with expectations. The closure
of the gap critically depends on the long-time tail of
the distribution, i.e. on the long-time tail of the 6 vs t
curve. This tail is difficult to assess experimentally (small
ti-values).

Remarks. (a) The data of Figure 1 do not fully agree
with the above theory. Figure 1 suggests that r~ff goes to a
finite limit for 6 ~ O. Thus, there must be a maximum
relaxation time and the gap should close, in contrast
with Figure 1. Later, we will show that Kovacs’ data
(Figure Z) have limited accuracy for small & and do
not allow any conclusion about the behaviour for
6 ~ 0. (b) Kovacs’ remis identical to the Bucci-relaxation
time21-23in mechanical relaxation. Also here, confusion
arose because some authors21’22did not realize that ~~ff
varies with time. It is exactly for this reason that
McCrum23 has introduced a corrected Bucci-relaxation
time T~l/2, which is ~effat a given 6/60-value.

Nonlinear volume recovery
For larger T-jumps (Figure 1), the volume recovery is

strongly affected by nonlinear effectsl. In the phen-
omenological volume-recovery theories15-’8 (which are
basically identical but differ in formalism), these non-
linearities are removed by introducing the concept of a
reduced time A; the nonlinear volume recovery then
reduces to the linear one of the previous section.

As discussed on pp. 117–122 of ref. 18, the recovery
after an ideal (stepwise) jump from an equilibrium state

In’ $
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at T. to final temperature T can be described by:

v(A) – v~ = (T. – T)#(A) (6)

with:

4(A) = @(co) - ‘lJ(A) (7)

where ~ is the unit-step response defined on p. 117 of
ref. 18 and A the reduced time given by:

(8)

Quantity &is an integration variable on the t-time scale
and a(v, T) the acceleration function depending on t(or
~) via the time dependence of v and T. Function a(v, T)
increases with increasing temperature and (free) volume.
As said before, the reduced time is introduced to remove
the nonlinearities; thus, ~(~) describes the linear volume
response on ~-time scale and the results of the previous
section can directly be applied to ~.

For T.ffwe find:

l/~e~ = –(1/6) d6/dt = –(1/6) d6/dA d}/dt (9)

Equation (8) yields:

dA/dt = a[ti(t)] (lo)

where a(~) is a function only of 6 because we deal with
isothermal recovery at final temperature T.
Combining equations (6), (9) and (10) we obtain:

l/~,ff = –a(~) (1/6) d6/dA = a(6)[–dlnd/dA] (11)

or:

log~eff = – log[a(6)] + log T&ff (12)

where:

l/~&ff = –din ~/dJ (13)

refers to the linear system (on A-time scale) to which the
previous results can be applied.

Let us now compare up-jumps to the same final
temperature T, starting from different initial tempera-
tures T. < T. On A-time scale, the behaviour is linear.
Thus, we can plot log& vs 6 as in Figures 2 and 3
and obtain the expansion gap (see Figure 4). Equation
(12) shows, however, that log~.ff and log& only
differ by the factor – log a(6), which only depends on
6. So, the expansion gap, at given r5is not influenced by
the nonlinear effects; at given 6 the correction due to the
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Figure 3 As Figure 2, but now for relaxation according to equation (4) with n = 0.5 and T = 1s. The gap slowly closes ford + O;see right subfigure
with engarged &scale
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0 — -6

F“igure4 Effect of nonlinearity on ~,f for up-jumps to final tempera-
ture T from To, and T(,2(initial deviations 601and 150J.log ~~firefers to
the linear behaviour on the A-time scale; a(d) is the acceleration
function. The curves for logTCmare obtained by adding – log a(?i) to
log ~~ti(see equation (12)). This addition has no effect on the expansion
gap (denoted by g and g’ = g)

non-linear effects is the same for all tests (see Figure 4).
The only effect of the nonlinearity is to tilt the curves; in
the nonlinear case (Figure 1), the log ~,ffvs d curves have
a (much) lower slope than in the linear case (Figures 2
and 3; see footnote on p. 4678).

The contraction gap; the asymmetry between heating and
cooling

A point, generally not discussed, is the contraction gap
for down-quenching. In the theory above, there is no
effect of the sign of the deviation from equilibrium. Thus,
the same gap should be expected for up- and down-
quenching. In Figure 5, the contraction data appear to
converge to the same point and the behaviour differs
from that after heating.

The interpretation can be found by combining (i) the
strong nonlinear aspects of volume recovery with (ii) the
non-ideality of the temperature jumps (not real steps).
Both points have been discussed in detail in refs 1, 2 and
15,and much of what follows in this section can be found
there. The volume-recovery tests are done on samples

2

1

0
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1

placed in dilatometers. The sample and the dilatometer
both have a thermal inertia and the jump is actually a
cooling or heating process with finite rate. This process is
characterized by a thermal equilibration time tdof the
order of 100s. On an A-time scale, the step is also non-
ideal; the corresponding transition time is denoted by Ad.
Now, the effect of non-ideal jumping dramatically differs
for cooling and heating. After an up-jump, acceleration
factor a increases with tand A, so:

(14j

/

t
)1– & = a(f) d( > a(td)[t– td] (15)

fd
which gives:

&/~ < td/t (16)

Consequently, we have ~ >> & for t >> ld. MpMng the

Boltzmann integral of equation (87) of ref. 18, it follows
that the differences between ideal and non-ideal heating
fade away for t>>td.In other words, up-quenches give
reliable restths for t>>td;itwas exactly for this reasorl
that we confined the theory of the previous Section to
up-quenches.

After a down-quench, the acceleration factor
decreases with time. The condition t>>tddoes not lead
to A >> Ad, which means that the effect of non-ideal
cooling may persist for times which are very long com-
pared to td.Thus, the recovery after down-quenching
cannot be derived in a straightforward way; it depends
on the details of the quenching process. However, we
may argue as follows: for large temperature jumps,
acceleration factor, a, decreases dramatically; according
to WLF, (Williams, Landes and Ferry, see ref. 20) by a
factor of 10 per few degrees Centigrade. During the
earlier phases of cooling, the relaxation times are still

o
! I I

40

-1I 1 i 1 1 1 , ,

4 -3 -2 -1 0 1 2 3

— 10$6

Figure 5 As Figure Z,but now completed with Kovac efal.’s2 contraction dat~ (quenching from various temperatures TOto final temperatures 7’of30
and 35”C). Note that for the heating data (left), we now plot 6 instead of –6 as in Figure 1
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very short, and the material more or less follows the
equilibrium line of the liquid above T~, provided that T.
lies sufficiently above T~. The actual quenching tempera-
ture is not To, but some temperature T;, almost
independent of To. Consequently, the recovery after
down-quenching only slightly depends on the initial
temperature T. 1,24; ~. hardly depends on To and ‘he

contraction gap will be reduced. Note that this is only
due to the strong nonlinearities during non-ideal
quenching; the contraction gap will appear if the jumps
are sufficiently small.

Let us finally consider the asymmetry seen in Figure 5
(cf. refs 1,2 and 15): the contraction curves show a much
higher slope than the expansion curves. As illustrated in
Figure 6, this is a direct consequence of the nonlinear
effects. The log -r~ffcurves (linear behaviour on A-time
scale) are symmetrical, i.e. the same for up- and down-
quenching. The log~eff curves (nonlinear behaviour on
t-time scale) are highly asymmetrical because the
asymmetric function – log[a(ti)] is added to log 7~ff.

THE ACCURACY OF KOVACS’ TeflDATA

There is a serious accuracy problem in Kovacs’ data
because the experimental errors in remmust go to infinity
for 6 ~ O. This can be seen as follows. Let c be the
absolute accuracy of 6. The absolute accuracy in rate
d6/dt is then proportional to ~. On approaching
equilibrium, 6 and d6/dt go to zero simultaneously.
Consequently, the relative errors in 6, d6/dt and
Teff= –8/[d6/dt] go to infinity.

Kovacs claimszs that his &values, measured with the
techniques described in ref. 26, have an accuracy of
+10-5. This appears to be a little bit optimistic, since:

in ref. 26, Kovacs mentioned a stability of the
thermostats (contact thermometer controlled; years
1950–1960) of +0.02°C. With an expansion coefficient
in the rubbery state of 6.9 x 10–4 ‘C–’ (PVAC data of
Table 1 of ref. 1) the resulting (slow) volume fluctu-
ations are +1.4 x 10–5.
the accuracy of the dilatometer scale reading was
said26 to be +1/20 mm3, which corresponds to a quite
reasonable read-off error of 0.1 mm (height of the
mercury column). With a sample volume of 1–2 cm3
(see ref. 26), the random error in each &reading equals
+2.5–5 X 10-5.
careful inspection of magnifications of Figures 8 and
17 of ref. ‘1 shows that ~ fluctuates by +-2–3 x 10-5

,0

.~ .

0

Figure 6 Asymmetry of log~em vs 6 curves for cooling (right) and
heating (left). The log-r~fl vs 8 curves (linear case; A-time scale) are
symmetrical; the asymmetry is introduced by quantity – log[a(c5)]which
is added to logr~fi to obtain logreff (see equation (12))

around the smooth curves drawn in these figures. We
neglect the even larger deviations at short times
(t= 0.01 h); these are most probably due to a delayed
approach of thermal equilibrium.

So, as a more realistic value, we take e = 2 x 10-5. The
conclusions to be reached below are not basically
changed, however, if we would accept Kovacs’ claim of
~ = 10–5.

Let us now calculate the relative error in ~eff. The
relative error in 6 equals:

Ad/b = +6/6; with e = 2 x 10–5 (17)

As argued below, Kovacs determined ~efiby numerical
differentiation of the 6 – tcurves, most probably by a
formula of the type:

Te;#(t3) = (xl – x2)/[(t2 – t,).xs] (18)

in which x = –6 (x is positive and decreasing with time
t).Times tl, t2and t3are equidistant with tl< t3< t2.
Most probably, Kovacs performed the differentiation on
a log time scale but, as can easily be verified, this does not
change the argument. Equation (18) is based on a
second-order polynomial and allows for curvature.

We now have:
a)
b)

$

e)

f)

the absolute error in xl – X2is +2c.
since x(t) decreases with increasing time, xl – X2will
be smaller than xl. Thus, the relative error in xl – X2
will be +2uc/xl with u > 1.
the relative error in X3is +e/x3.
the relative error in the time values is assumed to be
zero.
since the errors in xl, X2, and X3 are independent
(mainly capillary read-off errors or variations due
to temperature fluctuations), the relative error in
(xl – X2)/X3 is the sum of the errors mentioned under
points (b) and (c), i.e. +e[l/x3 + 2u/xl]. The term in
brackets exceeds 3/xl since X3< xl and u >1.
because of (d), the relative error mentioned under
point (e) is equal to that of T.K(cf. equation (18)),
provided that xl x X3= 6 (points not too far
removed). Thus, we have found the following lower
bound for the relative error in -rem:

A~.m/~.m= +3e/161 (19)

Note that equation (19) underestimates the real errors
(see later).

Figure 7 shows that the errors become very large for
6- (). At 6 = –10-4, the (underestimated) errors are
comparable to the alleged expansion gap at equilibrium
(cf. Figure Z). Thus, there is no and has never been any
physical evidence for such a gap at equilibrium. A similar

1
A Icq TM

I
o

m

o 1 2
—4X11Y

Figure 7 Relative error according to equation (19) (underestimate) for
~ = 2 x 10–5, The black area gives the positive and negative fluctuation
in log Teff.For 6 + O,any reliability in Tcffdisappears
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conclusion follows for ~ = 10–5 (Kovacs’s claim; errors
two times smaller).

A sharper estimate of the errors in log~eff(Figure 1)
can be obtained by a reconstruction of the way in
which Kovacs calculated ~efffrom the original volume-
relaxation curves of Figures 8 and 17 of ref. 1. The
volume data for T = 35°C (Figure 8 of ref. 1) are not
complete since the curve for TO= 32.5°C is missing.
Therefore, we restrict the analysis to the T = 40”C data
(Figure 17 of ref. 1).

Figure 1 shows a scatter in the r,~fvalues. This implies
that Kovacs did not derive ~,r, from an analytical
equation fitted to the whole 6 vs t curve, but applied
some numerical differentiation formula, e.g. a two-point
forward difference formula du/dt x [u(t + At) – v(t)]/
At or a three-point central difference formula dv/dt x
[v(t+ At)– v(t– At)]/(2At). The volume-relaxation
curves were originally obtained as v vs logt plots, so
the differentiation has logically been done on a Iogt scale.
Since the curves show some curvature, the three-point
formula (based on a second degree polynomial) is pre-
ferred over the two-point formula based on a straight
line approximation. Since the calculation is just as easy
for the three-point as for the two-point formula, Kovacs
most probably used the three-point formula. Higher
approximations are not required because, on a logt-scale,
the curvature is limited. So, we assume that Kovacs used
the following formula:

r = d6/d log t= [/i(p+ log t)– 6(–.D+ logt)]/(@)

(20)

where p is the spacing on a logt scale. If Kovacs used a
two-point formula, the errors derived below are two
times too small; thus, we are at the safe side.

Spacing, p, can be estimated by counting the number
of points in Figure 17 of ref. 1 and Figure 1 of the present
paper. It turns out that in both figures, the number of
points per decade (in time) is about the same, except for:

● the last part (103ti increasing from —1 to O) of the
TO= 32.5°C curve (10 points in Figure 1 and 17 in
Figure 17 of ref. 1)

● the last part (1036’from —1 to O) of the curve for
T. = 35°C (10 points in Figure 1 and 20 in Figure 17 of
ref. 1)

● the whole curve at T[)= 37.5°C (Figure 17 of ref. 1)
shows twice as many points as Figure 1)

So, we take p equal to the spacing in Figure 17 of ref. 1,
except for the cases mentioned above where the spacing
is taken as twice as large. In other words, we assume that
Kovacs calculated the rates from three successive data
points or from six for the exceptions mentioned above;
this corresponds to a spacing 2P of about 0.05–0.2
decades (cf. Figure 1 of ref. 1).

Since the absolute error in 6 is +6 (with ~ = 2 x 10-5),
the absolute error in the rate is given by (see equation
(20)):

Ar = *c/p (21)

We further have (see legend to Figure 1 and remember that
dh/dt = [d6/dln t]/t= [d6/d log t]/2.303t) =r/(2.303 t):

Tell= –ti/[d6/dt] = –62.303t/r (22)

Combining equations (21) and (22) we find:

Ar/r = +cTeff/[2.303tp161] (23)

The final error in ~e~fis found by adding the relative error
+c/ti in 6 (see equations (17) and (22)). We then get:

ATeff/7-eff = +{1 + Teff/[2.3031p]}E/lfil (24)

Ratio ~eff/tcan be obtained by combining Figure 17 of
ref. 1 with Figure 1 of the present paper; spacing p is
found as described before. The final result is shown in
Figure 8. As expected, the errors are greater than in
Figure 7. For the central part of the curves, the calculated
errors compare reasonably with the actual scatter seen in
Kovacs’ data. This gives some confidence in the above
analysis, which, as should be admitted, is only a
reconstruction. For 6 ~ O the calculated errors are
greater; here Kovacs’ data are puzzling since the scatter
shoukl increase with decreasing 6 (see before). Also for
large deviations from equilibrium, the calculated errors
are larger than the scatter in Kovacs’ data. Also here, the
almost constant scatter in Kovacs’ data is puzzling since
at large & (short times), the rates –d6/d log t become
small (see Figure 17 of ref. 1) and the relative error in ~cl.f
must increase.

The errors become infinite for As O (equations (19)
and (24)). Figure 8 shows that at 6 = –2.5 x 10–4 we
have an error of +30–40% (equation (19) gives 24~o); at
6 = –5 x 10-4, we have +20–300/. (equation (19) gives
120/0). So, in the next section, the analysis will be
restricted to –6’ z, 5 x 10–4.

Surprisingly, this high inaccuracy at small r$-valueshas
not received much attention in the literature, at least to
the author’s knowledge. It is immediately obvious that
the relative errors must be very large for 6 ~ O. It is also
well known that dilatometer experiments have an
accuracy of a few times 10–5. So, a point like A in
Figure 8 with a &value of –3 x 10-5 has relative errors in
6, dti/dt and reff of sO–lOOO/o and there are more such
highly unreliable points in Figure 1.

Final remark. Kovacs used non-ideal temperature
jumps; the time t~ to reach thermal equilibrium is
0.01--0.02 h2G.Particularly for the higher TO values in
Figure 1 (TO= 37.5 or 35°C with T = 40”C) this leads
to td/tratios which are not small compared to unity
(compare Figure 17 of ref. 1, where it appears that the
relaxation from 37.5°C is finished within 0.05–0. 1h
which is only a few times td).As can easily be verified
for the linear case (a(ti) = 1), such non-ideal jumping
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Figure 8 Replot of Figure f, but now with error bars as determined
with equation (24); for explanation see text
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leads to a decrease in ~efi.We disregard these effects here
because the corrections are smaller than the errors dis-
cussed before27.

QUANTITATIVE TEST OF THE VOLUME-
RELAXATION THEORY FOR THE ~eflDATA

We are now ready for a quantitative comparison of
theory and experiment. Theory predicts that we can
transform Figure 1 into a diagram in which all curves
superimpose. The reasoning is as follows. When we add
log[a(ti)] to the vertical coordinate of Figure 1, the
resulting quantity is log ~~ff= log[–d in q5/dA] (see
equations (11) and (12)). When we divide 6 (horizontal
coordinate) by T. – T, we get @(A)/vm (see equation
(6)). When these reduced quantities are plotted against
each other, a unique curve will result, independent of To,
because:

● v~ is independent of To.
● as usual in relaxation theory28, ~(~) is assumed to be a

total monotonic decreasing function of A Such
functions can be described by a sum of (or integral
over) positive exponential with different positive
relaxation times (see ref. 15 and pp. 118–122 of
ref. 18). This implies that –d in @/dA monotonically
decreases with increasing A (see Appendix). The
monotony of both @(A) and din @/dA implies that
there exists a unique relationship between these
quantities.

To find log[a(~)] we apply Kovacs’ formula (equation
(120b) of ref. 1):

loga(ti) = bc$/[2.303~T(c5+~T)] = c~/[1 + ~/~1(25)
in which the plus sign is used instead of a minusl because
here, a is considered as an acceleration factor, increasing
with fractional free volume f. Further, fT denotes the
f-value at equilibrium at T and b the b-factor of the

-1

Doolittle equation. Obviously, we have:

C= b/[2.303f~] (26)

k = fT (27)

Usually, b is taken as unity, which leads to fT-Values of
about 0.025 at T~ and to k = l/~(2.303c). Substituting
this in equations (26) and (27), we find: c x 700 and
k x 0.025. To find the optimum c-value, we constructed
the reduced plots as described before and varied c until
the scatter was minimum (for Doolittle’s b-factor of
unity).

The result is shown in Figure 9. As data points, we
took the Teff values read from the curves in Figure 1 for
–1036 = 0.50, 0.75, 1.00,..., etc. vie next varied c

between 400 and 1000, and found 600 as the best value.
Finally, we plotted logT~mvs 8/[To – T] and gave each
point an error bar as determined in the previous section.
Obviously, a single curve can be drawn through all error
bars. Thus, there is no disagreement between theory and
experiment, in contrast with the statements made in
ref. 3.

As said earlier, the inaccurate points close to equi-
librium (161<5 x 10-4) were omitted. In fact, this pivot
value of 5 x 10–4 is arbitrary and, therefore, we now
remove this restriction. In Figure ZOwe plotted all near-
equilibrium points of Figure Z (16[<5 x 10-4). The
log Tem and r!l-valueswere read from (a magnified version
of) Figure 1 and the plot was constructed with the
same values for c and b as in Figure 9. Also the curve of
Figure 9 is replotted in Figure 10 and the data points were
completed with error bars as described before. We
observe that also the inaccurate points follow the curve
of Figure 9, almost within experimental error.

At first sight, the result of Figure 10 looks surprising.
At equilibrium, we have log a(ti) = O. Thus, the vertical
shift, used to obtain superposition, is zero. Further, for
6 ~ 0, division by IT. – T] has no effect on the
horizontal coordinate (O divided by some number

% ‘
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o 0.1 02 0.3 0.4 0.5

Figure 9 Reduced plot derived from Figure 1 (40”C data and 161>5 x 10-4) by shifting the points in a vertical direction by an amount log a(ti) given
by equation (25) and by changing the horizontal axis by plotting 6/[T0 – T] instead of 6. According to theory, the data should lie on a single curve. The
error bars were taken from the previous section; for details, see text
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Figure 10 As Figure 9, and with the same constants (c = 600, b = 1), but now for the inaccurate data points, rejected in Figure 9; for details see text

remains O). Thus, our superposition method does not
charuze the coordinates of uoints close to equilibrium and
cann~t remove an expan~ion gap at eq~ilibrium. The
superposition still works because the alleged gap is
smaller than the large errors at 6-0.

The procedure us~d to construct Figure 9 does not lead
to a sharp estimate of parameter c. The value of 600 gives
the optimum fit, but the scatter in log~,ff is such that
good fits are also possible for c-values ranging between
500 and 700 (note that Kovacs used c = 670 for
constructing the dotted Ioga vs 6 curve in Figure 6 of
ref. 2). Even a model with k = co (log a(ti) = c6) givesa
reasonable fit. Consequently, by using rates, we have
introduced so much scatter that a sharp estimation of c
and k is impeded.

In a subsequent paper27, we will analyse Kovacs’
original 6 vs t curves and show that also these data can be
described within experimental error (+2 x 10-5) by the
phenomenological volume relaxation theory.

CONCLUSION

The T,ff-paradox does not exist. Kovacs’ data at small
&values should be rejected because of large inaccuracies
in rem;the rest of the data can be described by existing
phenomenological volume relaxation theory. Moreover,
even for linear relaxation, T.ff does not necessarily
converge to a single value at equilibrium.
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APPENDIX

Assume that function G(t) can be written as:

G(t) = ~g~ exp(–t/Tk) (Al)
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with:

gk >0 and ‘&>0 (A2)

whilst the summation runs from k = 1 to k = n > 1
(unspecified). We then have:

R(t) = –dln G(t)/dt

= {~[gk/Tk]exp(-’/Tk){~giexp(p,Ti)}i)}
(A3)

with i and k running from 1 to n.
Differentiation with respect to tyields:

dR/dt =f(t)/g(t) (A4)

f(t)= ~gkgi[l/(~~k)- l/~/] exp[-t(l/~ + l/~k)]

(A5)

g(t)= {~gi exp(-t/~)}2 (A6)

In the formula for~(t), we can interchange i and k and
get the same result. Adding this to that of equation (A5),
we get:

~(t) = ‘1/2 ~gkgi[l/~i2 + l/7~ _ 2/(~i~k)]

x exp[–t(l/~i + l/~k)] (A7)

which is obviously negative because the fist term in
square brackets is a square. With~(t) negative and g(t)
positive it follows that R(t)must be a decreasing function
of t.
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